

Journal of Molecular Catalysis A: Chemical 142 (1999) 393-395

Letter

Reductive B₁₂-catalyzed transformation of some tetrachloroalkanols to cyclopropane alkanols

Zorica Petrović *, Zorica Bugarčić, Ljiljana Marjanović, Stanimir Konstantinović

Faculty of Science, Department of Chemistry, P.O. Box 60, Radoja Domanovica 12, 34000 Kragujevac, Yugoslavia

Received 15 September 1998; accepted 6 November 1998

Keywords: Reductive B₁₂-catalyzed transformation; Tetrachloroalkanols; Cyclopropane alkanols

1. Introduction

Vitamin B_{12} is known as a coenzyme which promotes a series of biochemical transformations in vitro via radical intermediates [1]. It is a natural reagent which has been applied as catalyst for various reaction types, such as oxidations, hydrogenations, reductions of functional groups, reductive eliminations, rearrangements and reductive C–C bond formation [2]. Of special interest in organic synthesis is the B_{12} -catalyzed radical C–C bond formation [3].

The catalytically active species in these reactions is cob(I)alamin, which is obtained by electrochemical or chemical reduction (with NaBH₄ or activated Zn-dust) of vitamin B₁₂ (cyanocob(III)alamin) in two consecutive one-electron reductions:

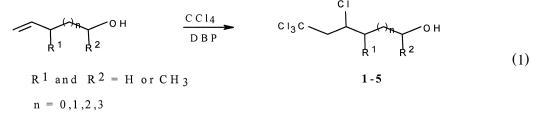
 $\operatorname{Co}(\operatorname{III}) \xrightarrow{^{+1e^{-}}} \operatorname{Co}(\operatorname{II}) \xrightarrow{^{+1e^{-}}} \operatorname{Co}(\operatorname{I})$

The cob(I)alamin obtained in this way is a very reactive species and undergoes rapid bimolecular nucleophilic substitution with alkyl halides, to form organocob(III)alamins [4]. The homolysis of Co–C bond of this intermediate affords radical R which undergoes typical free radical reactions.

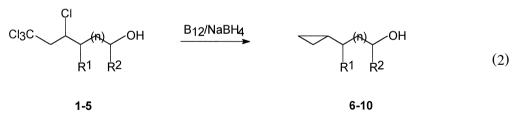
2. Experimental

A 100 cm³ flask under Ar, containing 30 cm³ EtOH, was charged with 0.16 g (0.12 mmol) of vitamin B_{12} and 0.0456 g (1.2 mmol) of NaBH₄ wrapped around a magnetic stirrer bar. After stirring for 30 min, the color changed from red to dark green (which is a sign that Co(III) from B_{12} is reduced to Co(I)). To this mixture was added 8 mmol of tetrachloroalkanol which had been prepared

^{*} Corresponding author


^{1381-1169/99/\$ -} see front matter @ 1999 Elsevier Science B.V. All rights reserved. PII: S1381-1169(99)00060-6

previously (yield about 90%) and dissolved in 20 cm³ EtOH:H₂O (1:1). The color immediately changed to red [(alkyl-Co(III)]. During the addition the flask must be cooled. After stirring for 20 h at r.t., the solution was washed with ice brine and extracted with Et_2O (3 × 10 cm³), dried (Na₂SO₄) and the solvent was removed. Chromatography of the crude product on silica gel afforded as a main fraction cyclopropane alkanol which is characterized by ¹H-NMR, ¹³C-NMR and IR spectroscopy.


3. Results and discussion

Concerning our work on chemical reductions catalyzed by vitamin B_{12} [5], we have now investigated the behavior of tetrachloroalkanols.

Tetrachloroalkanols 1–5 were synthesized according to the procedure with CCl_4/DBP [6] (Eq. (1)).

The reaction products 1-5 have been used as substrates and subjected to chemical reduction with vitamin B₁₂ and NaBH₄ (Eq. (2)).

The products 6-10 were analyzed by gas chromatography (GC), isolated by column chromatography on silica gel and characterized. The results of these investigations are summarized in Table 1.

	Substrate 1–5			Yield ^b of cyclopropane
	R^1	\mathbb{R}^2	n	alcohols ^c 6–10
1	Н	Н	0	70 ^a
2	Н	Н	1	70 ^a
3	Н	Н	2	65 ^a
4	CH ₃	Н	3	70 ^a
5	Н	CH ₃	3	70^{a}

Table 1 Reductive B_{12} -catalyzed cyclization of tetrachloroalkanols

^aFor a typical procedure see the text.

^bDetermined by GLC using an internal standard, and based on the starting tetrachloroalkanol.

^cStructures were determined on the basis of ¹H-NMR, ¹³C-NMR and IR spectral data. Characteristic signals in the ¹H-NMR (CDCl₃): 0 ppm (m), 0.4 ppm (m), 0.65 ppm (m).

On the basis of the obtained results, we can conclude as follows. In all examples, complete dehalogenations occurred (by 1,3-elimination and hydrogenolysis corresponding tetrachloroalkanols). All reactions proceed in good yields (65-70%). In the case of secondary alcohol, cyclopropyl ketone appears as a reaction product in an amount of 10%. Also alkenols and alkynols with terminal double, i.e., triple bond appear as side products in 8-10% yield.

Our results show that using of $B_{12}/NaBH_4$ is a very useful method for cyclization of our type tetrachloroalkanols followed by total dechlorination.

Using of this synthetic method is also very convenient for several reasons:

-it is possible to convert toxic polychloro compounds to nontoxic cyclopropane compounds,

-reaction product has one carbon atom more than starting compound,

-reaction proceeds under mild conditions with nontoxic reagents.

References

- [1] J. Retey, J. A. Robinson, Stereospecificity in Organic Chemistry and Enzymology, Veinheim, 1982, p. 185.
- [2] R. Scheffold, G. Rytz, L. Walder, Vitamin B₁₂ and Related Co-complexes as Catalysts in Organic Synthesis in Modern Synthetic Methods, New York, 1983, p. 355.
- [3] R. Scheffold, S. Abrecht, R. Orlinski, H.-R. Ruf, P. Stamouli, O. Tinembart, L. Walder, C. Weymuth, Pure Appl. Chem. 59 (1987) 363.
- [4] G.N. Schrauzer, E. Deutsch, J. Am. Chem. Soc. 91 (1969) 3341.
- [5] Z.D. Petrovic, S. Konstantinovic, R. Schreffold, S. Milosavljevic, Ind. J. Chem. 36B (1997) 765.
- [6] G. Barrere, B. Geneste, A. Sabatier, Pour la Scine 49 (1981) 56.